Disagreement and the Stock Market

Author:

Hong Harrison1,Stein Jeremy C2

Affiliation:

1. Professor of Economics, Princeton University, Princeton, New Jersey.

2. Moise Y. Safra Professor of Economics, Harvard University, and Research Associate, National Bureau of Economic Research, both in Cambridge, Massachusetts.

Abstract

A large catalog of variables with no apparent connection to risk has been shown to forecast stock returns, both in the time series and the cross-section. For instance, we see medium-term momentum and post-earnings drift in returns—the tendency for stocks that have had unusually high past returns or good earnings news to continue to deliver relatively strong returns over the subsequent six to twelve months (and vice-versa for stocks with low past returns or bad earnings news); we also see longer-run fundamental reversion—the tendency for “glamour” stocks with high ratios of market value to earnings, cashflows, or book value to deliver weak returns over the subsequent several years (and vice-versa for “value” stocks with low ratios of market value to fundamentals). To explain these patterns of predictability in stock returns, we advocate a particular class of heterogeneous-agent models that we call “disagreement models.” Disagreement models may incorporate work on gradual information flow, limited attention, and heterogeneous priors, but all highlight the importance of differences in the beliefs of investors. Disagreement models hold the promise of delivering a comprehensive joint account of stock prices and trading volume—and some of the most interesting empirical patterns in the stock market are linked to volume.

Publisher

American Economic Association

Subject

Economics and Econometrics,Economics and Econometrics

Cited by 611 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3