Significance of Weissenberg Number, Soret Effect and Multiple Slips on the Dynamic of Biconvective Magnetohydrodynamic Carreau Nanofuid Flow

Author:

Kumar Pardeep1ORCID,Poonia Hemant1,Ali Liaqat2ORCID,Shah Nehad Ali3,Chung Jae Dong3

Affiliation:

1. Department of Mathematics and Statistics, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India

2. School of Sciences, Xi’an Technological University, Xi’an 710021, China

3. Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea

Abstract

This study focused on the analysis of two-dimensional incompressible magnetohydrodynamic Carreau nanofluid flow across a stretching cylinder containing microorganisms with the impacts of chemical reactions and multiple slip boundary conditions. Moreover, the main objective is concerned with the enhancement of thermal transportation with the effect of heat source and bioconvection. By assigning pertinent similarity transitions to the governing partial differential equations, a series of equations (ODES) is generated. An optimum computational solver, namely the bvp5c software package, is utilized for numerical estimations. The impact of distinct parameters on thermal expansion, thermophoresis, and the Nusselt number has been emphasized, employing tables, diagrams, and surface maps for both shear thinning (n < 1) and shear thickening (n > 1) instances. Motile concentration profiles decrease with Lb and the motile microorganism density slip parameter. It is observed that with increasing values of Pr, both the boundary layer thickness and temperature declined in both cases. The Weissenberg number demonstrates a different nature depending on the type of fluid; skin friction, the velocity profile and Nusselt number drop when n < 1 and increase when n > 1. The two- and three-dimensional graphs show the simultaneous effect of involving parameters with physical quantities. The accuracy of the existing observations is evidenced by the impressive resemblance between the contemporary and preceding remedies.

Funder

Xian Technological University with Scientific research start-up fund of Xian Technological University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3