Mutually Coupled Time-to-Digital Converters (TDCs) for Direct Time-of-Flight (dTOF) Image Sensors

Author:

Ximenes Augusto,Padmanabhan PreethiORCID,Charbon Edoardo

Abstract

Direct time-of-flight (dTOF) image sensors require accurate and robust timing references for precise depth calculation. On-chip timing references are well-known and understood, but for imaging systems where several thousands of pixels require seamless references, area and power consumption limit the use of more traditional synthesizers, such as phase/delay-locked loops (PLLs/DLLs). Other methods, such as relative timing measurement (start/stop), require constant foreground calibration, which is not feasible for outdoor applications, where conditions of temperature, background illumination, etc. can change drastically and frequently. In this paper, a scalable reference generation and synchronization is provided, using minimum resources of area and power, while being robust to mismatches. The suitability of this approach is demonstrated through the design of an 8 × 8 time-to-digital converter (TDC) array, distributed over 1.69 mm2, fabricated using TSMC 65 nm technology (1.2 V core voltage and 4 metal layers—3 thin + 1 thick). Each TDC is based on a ring oscillator (RO) coupled to a ripple counter, occupying a very small area of 550 μ m2, while consuming 500 μ W of power, and has 2 μ s range, 125 ps least significant bit (LSB), and 14-bit resolution. Phase and frequency locking among the ROs is achieved, while providing 18 dB phase noise improvement over an equivalent individual oscillator. The integrated root mean square (RMS) jitter is less than 9 ps, the instantaneous frequency variation is less than 0.11%, differential nonlinearity (DNL) is less than 2 LSB, and integral nonlinearity (INL) is less than 3 LSB.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depth estimation in SPAD-based LIDAR sensors;Optics Express;2024-01-16

2. A 40-ps Resolution Robust Continuous Running VCRO-Based TDC for LiDAR Applications;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-02

3. Design of Occupational Accident Prevention System for Transportation Vehicles Based on TOF;Journal of Physics: Conference Series;2022-12-01

4. A Reconfigurable 5-Channel Ring-Oscillator-Based TDC for Direct Time-of-Flight 3D Imaging;IEEE Transactions on Circuits and Systems II: Express Briefs;2022-05

5. ToF Range Imaging Cameras;Timing Jitter in Time-of-Flight Range Imaging Cameras;2021-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3