Depth estimation in SPAD-based LIDAR sensors

Author:

Chen Mingzhe12,Rao Padmakumar R.2,Venialgo Esteban

Affiliation:

1. Silicon Integrated B.V.

2. Delft University of Technology

Abstract

In direct time-of-flight (D-TOF) light detection and ranging (LIDAR), accuracy and full-scale range (FSR) are the main performance parameters to consider. Particularly, in single-photon avalanche diodes (SPAD) based systems, the photon-counting statistics plays a fundamental role in determining the LIDAR performance. Also, the intrinsic performance ultimately depends on the system parameters and constraints, which are set by the application. However, the best-achievable performance directly depends on the selected depth estimation method and is not necessarily equal to intrinsic performance. We evaluate a D-TOF LIDAR system, in the particular context of smartphone applications, in terms of parameter trade-offs and estimation efficiency. First, we develop a simulation model by combining radiometry and photon-counting statistics. Next, we perform a trade-off analysis to study dependencies between system parameters and application constraints, as well as non-linearities caused by the detection method. Further, we derive an analytical model to calculate the Cramér–Rao lower bound (CRLB) of the LIDAR system, which analytically accounts for the shot noise. Finally, we evaluate a depth estimation method based on artificial intelligence (AI) and compare its performance to the CRLB. We demonstrate that the AI-based estimator fully compensates the non-linearity in depth estimation, which varies depending on application conditions such as target reflectivity.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3