Surface Ripple Formation by Bombardment with Clusters: Influence of Mass

Author:

Jiménez-Sáez José Carlos1ORCID,Muñoz Sagrario2ORCID,Palacios Pablo1ORCID

Affiliation:

1. Department of Applied Physics in Aeronautical and Naval Engineering, ETSIAE, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain

2. Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physical Sciences, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain

Abstract

Nanostructure formation on Co(110) surfaces was studied by using irradiation with cluster ion beams with oblique incidence and an energy of 250 eV/atom. In this work, the effect of the mass of the cluster projectiles on the process was analyzed. The launched clusters were formed by different types of charged atoms: He, Ne, Ar, Kr, and Xe. Due to the different collision processes, the formed surface patterns stand out more if the mass of the projectile atoms is greater, regardless of the angle of incidence of the clusters. Two processes control the morphological evolution of the surface during the bombardment phase: sputtering erosion and surface atomic redistribution. At grazing angles, the contribution of sputtering is greater during the process. In fact, heavier species give greater sputtering, and the redistribution factor becomes lower. The weight of redistribution is greater for intermediate angles above the critical angle (50° and 60°), since the displacement is greater for heavier species, and the redistribution factor takes substantially higher values. The experimental results point to a shift in the critical angle with the mass of the projectile atom. In the case of He, a very light ion, the results are marked by channeling and vertical displacements.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3