Texture-Guided Graph Transform Optimization for Point Cloud Attribute Compression

Author:

Shao Yiting12ORCID,Song Fei12,Gao Wei1ORCID,Liu Shan3,Li Ge1ORCID

Affiliation:

1. School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China

2. Peng Cheng Laboratory, Shenzhen 518066, China

3. Media Laboratory, Tencent, Palo Alto, CA 94306-2028, USA

Abstract

There is a pressing need across various applications for efficiently compressing point clouds. While the Moving Picture Experts Group introduced the geometry-based point cloud compression (G-PCC) standard, its attribute compression scheme falls short of eliminating signal frequency-domain redundancy. This paper proposes a texture-guided graph transform optimization scheme for point cloud attribute compression. We formulate the attribute transform coding task as a graph optimization problem, considering both the decorrelation capability of the graph transform and the sparsity of the optimized graph within a tailored joint optimization framework. First, the point cloud is reorganized and segmented into local clusters using a Hilbert-based scheme, enhancing spatial correlation preservation. Second, the inter-cluster attribute prediction and intra-cluster prediction are conducted on local clusters to remove spatial redundancy and extract texture priors. Third, the underlying graph structure in each cluster is constructed in a joint rate–distortion–sparsity optimization process, guided by geometry structure and texture priors to achieve optimal coding performance. Finally, point cloud attributes are efficiently compressed with the optimized graph transform. Experimental results show the proposed scheme outperforms the state of the art with significant BD-BR gains, surpassing G-PCC by 31.02%, 30.71%, and 32.14% in BD-BR gains for Y, U, and V components, respectively. Subjective evaluation of the attribute reconstruction quality further validates the superiority of our scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3