Abstract
This study assessed the impact of climate change on the hydrological regime of the Paraguaçu river basin, northeastern Brazil. Hydrological impact simulations were conducted using the Soil and Water Assessment Tool (SWAT) for 2020–2040. Precipitation and surface air temperature projections from two Regional Climate Models (Eta-HadGEM2-ES and Eta-MIROC5) based on IPCC5—RCP 4.5 and 8.5 scenarios were used as inputs after first applying two bias correction methods (linear scaling—LS and distribution mapping—DM). The analysis of the impact of climate change on streamflow was done by comparing the maximum, average and reference (Q90) flows of the simulated and observed streamflow records. This study found that both methods were able to correct the climate projection bias, but the DM method showed larger distortion when applied to future scenarios. Climate projections from the Eta-HadGEM2-ES (LS) model showed significant reductions of mean monthly streamflow for all time periods under both RCP 4.5 and 8.5. The Eta-MIROC5 (LS) model showed a lower reduction of the simulated mean monthly streamflow under RCP 4.5 and a decrease of streamflow under RCP 8.5, similar to the Eta-HadGEM2-ES model results. The results of this study provide information for guiding future water resource management in the Paraguaçu River Basin and show that the bias correction algorithm also plays a significant role when assessing climate model estimates and their applicability to hydrological modelling.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献