Water Quantity and Quality under Future Climate and Societal Scenarios: A Basin-Wide Approach Applied to the Sorraia River, Portugal

Author:

Almeida Carina,Ramos Tiago,Segurado Pedro,Branco Paulo,Neves Ramiro,Proença de Oliveira RodrigoORCID

Abstract

Water resources are impacted by several stressors like over-population and over consumption that compromises their availability. These stressors are expected to progressively intensify due to climate change in most regions of the world, with direct impact on watersheds and river systems. This study investigates the effect of different watershed pressure scenarios due to climate change in the hydrological regime of the Sorraia River basin, Portugal. This catchment includes one of the largest irrigated areas in the country, thus being strongly influenced by anthropogenic activities, associated to hydrological (irrigation, flow regulation, damming) and nutrient stressors. The Soil Water Assessment Tool has been used to simulate water flow and nutrient dynamics in the watershed while considering inputs from two climate models and three societal scenarios. Results have shown that the predicted rainfall reductions will have a significant impact on river flow and nutrient concentrations when compared to baseline conditions. River flow will expectably decrease by 75%, while nitrogen and phosphorus concentrations in river water will expectably increase by 500% and 200%, respectively. These differences are more evident for storylines that consider increasing pressures such as population growth and agricultural expansion marked with unsustainable practices and increased reliance on technology. The results of this study indicate a possible future outcome and provide effective guidelines for the formulation of water management policies to counter the impacts of climate change and corresponding environmental pressures in the Sorraia River basin.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3