Generalized Nonlinear Least Squares Method for the Calibration of Complex Computer Code Using a Gaussian Process Surrogate

Author:

Lee YoungsaengORCID,Park Jeong-SooORCID

Abstract

The approximated nonlinear least squares (ALS) method has been used for the estimation of unknown parameters in the complex computer code which is very time-consuming to execute. The ALS calibrates or tunes the computer code by minimizing the squared difference between real observations and computer output using a surrogate such as a Gaussian process model. When the differences (residuals) are correlated or heteroscedastic, the ALS may result in a distorted code tuning with a large variance of estimation. Another potential drawback of the ALS is that it does not take into account the uncertainty in the approximation of the computer model by a surrogate. To address these problems, we propose a generalized ALS (GALS) by constructing the covariance matrix of residuals. The inverse of the covariance matrix is multiplied to the residuals, and it is minimized with respect to the tuning parameters. In addition, we consider an iterative version for the GALS, which is called as the max-minG algorithm. In this algorithm, the parameters are re-estimated and updated by the maximum likelihood estimation and the GALS, by using both computer and experimental data repeatedly until convergence. Moreover, the iteratively re-weighted ALS method (IRWALS) was considered for a comparison purpose. Five test functions in different conditions are examined for a comparative analysis of the four methods. Based on the test function study, we find that both the bias and variance of estimates obtained from the proposed methods (the GALS and the max-minG) are smaller than those from the ALS and the IRWALS methods. Especially, the max-minG works better than others including the GALS for the relatively complex test functions. Lastly, an application to a nuclear fusion simulator is illustrated and it is shown that the abnormal pattern of residuals in the ALS can be resolved by the proposed methods.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3