Smart Quantum Tunneling Composite Sensors to Monitor FKM and FFKM Seals

Author:

Periyasamy Mookkan1,Quartapella Carmen J.1,Piacente Nicholas P.1ORCID,Reichl Gary1,Lynn Brian1

Affiliation:

1. GT Services, LLC, 1684 South Broad Street, P.O. Box 1307, Lansdale, PA 19440, USA

Abstract

Operators of industrial machinery relentlessly pursue improving safety, increasing productivity, and minimizing unplanned downtime. Elastomer seals are ubiquitous components of this machinery. In general, static seals are designed to be compressed at a fixed level of compression, taking gland geometry, loading condition, temperature range of operation, fluid media exposure, and other factors into account to ensure the safe operation of equipment. Over time, seals experience compression set, chemical-induced swelling, erosion, and other phenomena which can compromise the compressive force generated by the seal and cause leaking. This is particularly important in critical applications, where high pressure, high temperature, and aggressive media are present, and fluorinated elastomers are common materials for seals. Further, changes in operating conditions at manufacturing plants, either intentional or through regular process variation, create unknown operating conditions for seals. This unknown and variable application environment makes seal performance hard to predict. Therefore, machinery utilizing seals is, at best, serviced preventatively at certain intervals, where seals are removed, and the remaining useful life of the seal is unknown. This leads to unnecessary machinery downtime and increases consumable costs for manufacturers. In the worst case, the seal is run to failure, creating machinery and plant safety concerns. Both scenarios are undesirable for manufacturers using industrial machinery. This paper reports on the development of “smart” intrinsic self-sensing seals, which enable performance monitoring of the compression behavior of seals while in use. In addition, this paper examines quantum tunneling elastomeric composites (QTC) to demonstrate a method of component performance monitoring by modifying the underlying elastomeric material itself. This paper studies QTC sensor-based fluorinated (FKM) and per-fluorinated (FFKM) compositions, which are modified to incorporate varying levels of carbon nanostructure (CNS) material. The resulting seal’s resistive properties are shown to be a function of the level of compression, the first time this phenomenon has been demonstrated in high-performing FKM and FFKM seal materials.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. (2020, December 18). Discover Composites. What Are Composites. Available online: https://discovercomposites.com/what-are-composites/.

2. Miracle, D.B., and Donaldson, S.L. (2001). ASM Handbook, ASM International.

3. (2019, April 01). Physics: Quantum Tunnelling Composite. Wikipedia. Available online: https://handwiki.org/wiki/Physics:Quantum_tunnelling_composite.

4. (2022, December 01). Quantum Tunnelling Composite. Wikipedia. Available online: https://en.wikipedia.org/wiki/Quantum_tunnelling_composite.

5. (2022, June 15). How Are Metals Made?. Available online: https://coursehero.com/file/dot2.docx.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Sensor‐Integrating Machine Elements;Advanced Sensor Research;2024-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3