Abstract
Compact polarimetric synthetic aperture radar (CP SAR), as a new technique or observation system, has attracted much attention in recent years. Compared with quad-polarization SAR (QP SAR), CP SAR provides an observation with a wider swath, while, compared with linear dual-polarization SAR, retains more polarization information in observations. These characteristics make CP SAR a useful tool in marine environmental applications. Previous studies showed the potential of CP SAR images for ship detection. However, false alarms, caused by ocean clutter and the lack of detailed information about ships, largely hinder traditional methods from feature selection for ship discrimination. In this paper, a segmentation method designed specifically for ship detection from CP SAR images is proposed. The pixel-wise detection is based on a fully convolutional network (i.e., U-Net). In particular, three classes (ship, land, and sea) were considered in the classification scheme. To extract features, a series of down-samplings with several convolutions were employed. Then, to generate classifications, deep semantic and shallow high-resolution features were used in up-sampling. Experiments on several CP SAR images simulated from Gaofen-3 QP SAR images demonstrate the effectiveness of the proposed method. Compared with Faster RCNN (region-based convolutional neural network), which is considered a popular and effective deep learning network for object detection, the newly proposed method, with precision and recall greater than 90% and a F1 score of 0.912, performs better at ship detection. Additionally, findings verify the advantages of the CP configuration compared with single polarization and linear dual-polarization.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献