Ship Detection Using a Fully Convolutional Network with Compact Polarimetric SAR Images

Author:

Fan Qiancong,Chen FengORCID,Cheng Ming,Lou Shenlong,Xiao Rulin,Zhang BiaoORCID,Wang ChengORCID,Li JonathanORCID

Abstract

Compact polarimetric synthetic aperture radar (CP SAR), as a new technique or observation system, has attracted much attention in recent years. Compared with quad-polarization SAR (QP SAR), CP SAR provides an observation with a wider swath, while, compared with linear dual-polarization SAR, retains more polarization information in observations. These characteristics make CP SAR a useful tool in marine environmental applications. Previous studies showed the potential of CP SAR images for ship detection. However, false alarms, caused by ocean clutter and the lack of detailed information about ships, largely hinder traditional methods from feature selection for ship discrimination. In this paper, a segmentation method designed specifically for ship detection from CP SAR images is proposed. The pixel-wise detection is based on a fully convolutional network (i.e., U-Net). In particular, three classes (ship, land, and sea) were considered in the classification scheme. To extract features, a series of down-samplings with several convolutions were employed. Then, to generate classifications, deep semantic and shallow high-resolution features were used in up-sampling. Experiments on several CP SAR images simulated from Gaofen-3 QP SAR images demonstrate the effectiveness of the proposed method. Compared with Faster RCNN (region-based convolutional neural network), which is considered a popular and effective deep learning network for object detection, the newly proposed method, with precision and recall greater than 90% and a F1 score of 0.912, performs better at ship detection. Additionally, findings verify the advantages of the CP configuration compared with single polarization and linear dual-polarization.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3