AI-Based Approach to One-Click Chronic Subdural Hematoma Segmentation Using Computed Tomography Images

Author:

Petrov Andrey1ORCID,Kashevnik Alexey2ORCID,Haleev Mikhail2,Ali Ammar3,Ivanov Arkady1ORCID,Samochernykh Konstantin1ORCID,Rozhchenko Larisa1ORCID,Bobinov Vasiliy1ORCID

Affiliation:

1. Polenov Russian Research Institute of Neurosurgery, Almazov National Medical Research Center, 191014 St. Petersburg, Russia

2. St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), 199178 St. Petersburg, Russia

3. Information Technologies and Programming Faculty, ITMO University, 197101 St. Petersburg, Russia

Abstract

This paper presents a computer vision-based approach to chronic subdural hematoma segmentation that can be performed by one click. Chronic subdural hematoma is estimated to occur in 0.002–0.02% of the general population each year and the risk increases with age, with a high frequency of about 0.05–0.06% in people aged 70 years and above. In our research, we developed our own dataset, which includes 53 series of CT scans collected from 21 patients with one or two hematomas. Based on the dataset, we trained two neural network models based on U-Net architecture to automate the manual segmentation process. One of the models performed segmentation based only on the current frame, while the other additionally processed multiple adjacent images to provide context, a technique that is more similar to the behavior of a doctor. We used a 10-fold cross-validation technique to better estimate the developed models’ efficiency. We used the Dice metric for segmentation accuracy estimation, which was 0.77. Also, for testing our approach, we used scans from five additional patients who did not form part of the dataset, and created a scenario in which three medical experts carried out a hematoma segmentation before we carried out segmentation using our best model. We developed the OsiriX DICOM Viewer plugin to implement our solution into the segmentation process. We compared the segmentation time, which was more than seven times faster using the one-click approach, and the experts agreed that the segmentation quality was acceptable for clinical usage.

Funder

Russian State Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3