Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning

Author:

Han Yanling,Gao Yi,Zhang Yun,Wang Jing,Yang ShuhuORCID

Abstract

Sea ice is one of the causes of marine disasters. The classification of sea ice images is an important part of sea ice detection. The labeled samples in hyperspectral sea ice image classification are difficult to acquire, which causes minor sample problems. In addition, most of the current sea ice classification methods mainly use spectral features for shallow learning, which also limits further improvement of the sea ice classification accuracy. Therefore, this paper proposes a hyperspectral sea ice image classification method based on the spectral-spatial-joint feature with deep learning. The proposed method first extracts sea ice texture information by the gray-level co-occurrence matrix (GLCM). Then, it performs dimensionality reduction and a correlation analysis of the spectral information and spatial information of the unlabeled samples, respectively. It eliminates redundant information by extracting the spectral-spatial information of the neighboring unlabeled samples of the labeled sample and integrating the information with the spectral and texture data of the labeled sample to further enhance the quality of the labeled sample. Lastly, the three-dimensional convolutional neural network (3D-CNN) model is designed to extract the deep spectral-spatial features of sea ice. The proposed method combines relevant textural features and performs spectral-spatial feature extraction based on the 3D-CNN model by using a large amount of unlabeled sample information. In order to verify the effectiveness of the proposed method, sea ice classification experiments are carried out on two hyperspectral data sets: Baffin Bay and Bohai Bay. Compared with the CNN algorithm based on a single feature (spectral or spatial) and other CNN algorithms based on spectral-spatial features, the experimental results show that the proposed method achieves better sea ice classification (98.52% and 97.91%) with small samples. Therefore, it is more suitable for classifying hyperspectral sea ice images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3