The Atmospheric Response to Three Decades of Observed Arctic Sea Ice Loss

Author:

Screen James A.1,Simmonds Ian1,Deser Clara2,Tomas Robert2

Affiliation:

1. School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

2. Climate and Global Dynamics, National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Arctic sea ice is declining at an increasing rate with potentially important repercussions. To understand better the atmospheric changes that may have occurred in response to Arctic sea ice loss, this study presents results from atmospheric general circulation model (AGCM) experiments in which the only time-varying forcings prescribed were observed variations in Arctic sea ice and accompanying changes in Arctic sea surface temperatures from 1979 to 2009. Two independent AGCMs are utilized in order to assess the robustness of the response across different models. The results suggest that the atmospheric impacts of Arctic sea ice loss have been manifested most strongly within the maritime and coastal Arctic and in the lowermost atmosphere. Sea ice loss has driven increased energy transfer from the ocean to the atmosphere, enhanced warming and moistening of the lower troposphere, decreased the strength of the surface temperature inversion, and increased lower-tropospheric thickness; all of these changes are most pronounced in autumn and early winter (September–December). The early winter (November–December) atmospheric circulation response resembles the negative phase of the North Atlantic Oscillation (NAO); however, the NAO-type response is quite weak and is often masked by intrinsic (unforced) atmospheric variability. Some evidence of a late winter (March–April) polar stratospheric cooling response to sea ice loss is also found, which may have important implications for polar stratospheric ozone concentrations. The attribution and quantification of other aspects of the possible atmospheric response are hindered by model sensitivities and large intrinsic variability. The potential remote responses to Arctic sea ice change are currently hard to confirm and remain uncertain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3