Towards an AI-Based Tailored Training Planning for Road Cyclists: A Case Study

Author:

Silacci AlessandroORCID,Taiar RedhaORCID,Caon MaurizioORCID

Abstract

In a world where the data is a central piece, we provide a novel technique to design training plans for road cyclists. This study exposes an in-depth review of a virtual coach based on state-of-the-art artificial intelligence techniques to schedule road cycling training sessions. Together with a dozen of road cycling participants’ training data, we were able to create and verify an e-coach dedicated to any level of road cyclists. The system can provide near-human coaching advice on the training of cycling athletes based on their past capabilities. In this case study, we extend the tests of our empirical research project and analyze the results provided by experts. Results of the conducted experiments show that the computational intelligence of our system can compete with human coaches at training planification. In this case study, we evaluate the system we previously developed and provide new insights and paths of amelioration for systems based on artificial intelligence for athletes. We observe that our system performs equal or better than the control training plans in 14 and 24 week training periods where it was evaluated as better in 4 of our 5 test components. We also report a higher statistical difference in the results of the experts’ evaluations between the control and virtual coach training plan (24 weeks; training load: X2 = 4.751; resting time quantity: X2 = 3.040; resting time distance: X2 = 2.550; efficiency: X2 = 2.142).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3