Model Validation and Scenario Selection for Virtual-Based Homologation of Automated Vehicles

Author:

Riedmaier StefanORCID,Schneider DanielORCID,Watzenig Daniel,Diermeyer FrankORCID,Schick Bernhard

Abstract

Due to the rapid progress in the development of automated vehicles over the last decade, their market entry is getting closer. One of the remaining challenges is the safety assessment and type approval of automated vehicles, as conventional testing in the real world would involve an unmanageable mileage. Scenario-based testing using simulation is a promising candidate for overcoming this approval trap. Although the research community has recognized the importance of safeguarding in recent years, the quality of simulation models is rarely taken into account. Without investigating the errors and uncertainties of models, virtual statements about vehicle safety are meaningless. This paper describes a whole process combining model validation and safety assessment. It is demonstrated by means of an actual type-approval regulation that deals with the safety assessment of lane-keeping systems. Based on a thorough analysis of the current state-of-the-art, this paper introduces two approaches for selecting test scenarios. While the model validation scenarios are planned from scratch and focus on scenario coverage, the type-approval scenarios are extracted from measurement data based on a data-driven pipeline. The deviations between lane-keeping behavior in the real and virtual world are quantified using a statistical validation metric. They are then modeled using a regression technique and inferred from the validation experiments to the unseen virtual type-approval scenarios. Finally, this paper examines safety-critical lane crossings, taking into account the modeling errors. It demonstrates the potential of the virtual-based safeguarding process using exemplary simulations and real driving tests.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference61 articles.

1. Global Status Report on Road Safety 2018,2018

2. SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,2018

3. Road Safety: Commission Welcomes Agreement on New EU Rules to Help Save Lives,2019

4. Addendum 78: UN Regulation No. 79—Uniform Provisions Concerning the Approval of Vehicles with Regard to Steering Equipment,2018

5. Proposal for a New UN Regulation on Uniform Provisions Concerning the Approval of Vehicles with Regards to Automated Lane Keeping System (ECE/TRANS/WP.29/2020/81),2020

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3