Abstract
This experimental study investigated the flexural performance of corroded reinforced concrete (RC) slabs strengthened with basalt textile-reinforced mortar (BTRM) and basalt fiber-reinforced polymers (BFRP). Ten RC slabs were designed to achieve the expected corrosion levels (8% mass loss for moderate corrosion and 16% mass loss for severe corrosion) by accelerated corrosion methods. Two slabs served as reference specimens, and eight slabs were strengthened with BFRP or BTRM. The specimens were loaded to failure by the four-point bending method. The corrosion ratio, strengthening materials and the number of layers were tested for comparison. The failure modes, flexural capacities, load–deflection curves and deformation performances of the slabs were obtained from experiments. It was found that the use of BTRM layers was more effective in improving the flexural response than the use of the same amount of BFRP layers externally bonded with the corroded RC slabs under a state of serviceability. The results also showed that the strengthening effects of BFRP and BTRM were affected by the initial corrosion ratio and the number of textile layers. In a moderate state of corrosion, the flexural capacities and deflection capacities of RC slabs strengthened by BFRP and BTRM were increased substantially; the flexural capacities were increased by 27.81%~61.85%. In a severe corrosion state, the increase in flexural capacity of strengthened slabs is marginal but the increase in ductility indexes was 18% to 35% compared with the corresponding control slabs. By increasing the number of textile layers from three to five, the increments of the flexural capacity of strengthened slabs are almost doubled. Finally, the calculated results of the flexural capacity of the corroded RC slabs strengthened with BFRP and BTRM were found to be in good agreement with the experimental results.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献