An Assist-as-Needed Controller for Passive, Assistant, Active, and Resistive Robot-Aided Rehabilitation Training of the Upper Extremity

Author:

Zhang LeigangORCID,Guo Shuai,Sun QingORCID

Abstract

Clinical studies have demonstrated that robot-involved therapy can effectively improve the rehabilitation training effect of motor ability and daily behavior ability of subjects with an upper limb motor dysfunction. This paper presents an impedance-based assist-as-needed controller that can be used in robot-aided rehabilitation training for subjects with an upper extremity dysfunction. Then, the controller is implemented on an end-effector upper extremity rehabilitation robot which could assist subjects in performing training with a spatial trajectory. The proposed controller enables subjects’ arms to have motion freedom by building a fault-tolerant region around the rehabilitation trajectory. Subjects could move their upper limb without any assistance within the fault-tolerant region while the robot would provide assistance according to the subjects’ functional ability when deviating from the fault-tolerant region. Besides, we also put forward the stiffness field around the fault-tolerant region to increase the robot’s assistance when subjects’ hand is moving outside the fault-tolerant region. A series of columnar rigid walls would be constructed in the controller according to the subjects’ functional ability, and the stiffness of the wall increases as the motion performance deteriorates. Furthermore, the controller contains five adjustable parameters. The controller would show different performances by adjusting these parameters and satisfy the requirement of robot-aided rehabilitation training at different rehabilitation stages such as passive, assistant, active, and resistant training. Finally, the controller was tested with an elderly female participant with different controller parameters, and experimental results verified the correctness of the controller and its potential ability to satisfy the training requirements at different rehabilitation stages. In the close future, the proposed controller in this work is planned to be applied on more subjects and also patients who have upper limb motor dysfunctions to demonstrate performance of the controller with different parameters.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3