Electrical Coupling of Monolithic 3D Inverters (M3INVs): MOSFET and Junctionless FET

Author:

Ahn Tae JunORCID,Yu Yun SeopORCID

Abstract

In this paper, we investigated the electrical coupling between the top and bottom transistors in a monolithic 3-dimensional (3D) inverter (M3INV) stacked vertically with junctionless field-effect transistor (JLFET), which is one of candidates to replace metal-oxide-semiconductor field-effect transistors (MOSFET). Currents, transconductances, and gate capacitances of the top N-type transistor at the different gate voltages of the bottom P-type transistor as a function of thickness of inter-layer dielectric (TILD) and gate channel length (Lg) are simulated using technology computer-aided-design (TCAD). In M3INV stacked vertically with MOSFET (M3INV-MOS) and JLFET (M3INV-JL), the variations of threshold voltage, transconductance, and capacitance increase as TILD decreases and they increase as Lg increases, and thus there is a strong coupling in M3INV at the range of TILD ≤ 30 nm. In M3INV, the coupling between stacked JLFETs in M3INV-JL is larger than that between MOSFETs in M3INV-MOS at the same TILD and Lg. The switching threshold voltage (Vm) and noise margins (NMs) of M3INV are calculated from the voltage transfer characteristics (VTC) simulated with TCAD mixed-mode. As the gate lengths of M3INV-MOS and M3INV-JL increase, the Vm variations increase and decrease, respectively. The smaller the gate lengths of M3INV-NOS and M3INV-JL, the larger and smaller the variation of Vm, respectively. The noise margin of M3INV-MOS is larger and better for inverter characteristics than one of M3INV-JL. M3INV-MOS has less electrical coupling than M3INV-JL.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3