Hybrid Model Predictive Control of Semiactive Suspension in Electric Vehicle with Hub-Motor

Author:

Jiang Hong,Wang Chengchong,Li Zhongxing,Liu Chenlai

Abstract

In hub-motor electric vehicles (HM-EVs), the unbalanced electromagnetic force generated by the HM will further deteriorate the dynamic performance of the electric vehicle. In this paper, a semiactive suspension control method is proposed for HM-EVs. A quarter HM-EV model with an electromechanical coupling effect is established.The model consists of three parts: a motor model, road excitation model and vehicle model. A hybrid model predictive controller (HMPC) is designed based on the developed model, taking into account the nonlinear constraints of damping force. The focus is on improving the vertical performance of the HM-EV. Then, a Kalman filter is designed to provide the required state variables for the controller. The proposed control algorithm and constrained optimal control (COC) algorithm are simulation compared under random road excitation and bump road excitation, and the results show that the proposed control algorithm can improve ride comfort, reduce motor vibration, and improve handling stability more substantially.

Funder

National Natural Science Foundation of china

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vehicle pitch dynamics control using in-wheel motors;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-21

2. A nonlinear model predictive control for air suspension in hub motor electric vehicle;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-16

3. Design and Optimization of a New Vibration Damping System for the Driving Characteristics of the Selected Case of Replacing Pneumatic Wheels with Nonpneumatic Wheels;Shock and Vibration;2023-12-22

4. Robust Identification of Stable MIMO Modal State Space Models;Topics in Modal Analysis & Parameter Identification, Volume 8;2022-08-04

5. DEEP NEURAL NETWORK BASED DATA-DRIVEN VIRTUAL SENSOR IN VEHICLE SEMI-ACTIVE SUSPENSION REAL-TIME CONTROL;Transport;2022-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3