Strong Noise Rejection in VLC Links under Realistic Conditions through a Real-Time SDR Front-End

Author:

Umair Muhammad Ali12ORCID,Meucci Marco12ORCID,Catani Jacopo12ORCID

Affiliation:

1. European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, I-50019 Sesto Fiorentino, Italy

2. National Institute of Optics-CNR (CNR-INO), I-50019 Sesto Fiorentino, Italy

Abstract

One of the main challenges in the deployment of visible light communication (VLC) in realistic application fields, such as intelligent transportation systems (ITSs), is represented by the presence of large background noise levels on top of the optical signal carrying the digital information. A versatile and effective digital filtering technique is, hence, crucial to face such an issue in an effective way. In this paper, we present an extensive experimental evaluation of a complete VLC system, embedding a software-defined-radio (SDR)-based digital signal processing (DSP) filter stage, which is tested either indoors, in the presence of strong artificial 100-Hz stray illumination, and outdoors, under direct sunlight. The system employs low-power automotive LED lamps, and it is tested for baud rates up to 1 Mbaud. We experimentally demonstrate that the use of the DSP technique improves 10× the performance of the VLC receiver over the original system without the filtering stage, reporting a very effective rejection of both 100-Hz and solar noise background. Indoors, the noise margin in the presence of strong 100-Hz noise is increased by up to 40 dB, whilst in the outdoor configuration, the system is capable of maintaining error-free communication in direct sunlight conditions, up to 7.5 m, improving the distance by a factor of 1.6 compared to the case without filtering. We believe that the proposed system is a very effective solution for the suppression of various types of noise effects in a large set of VLC applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3