Experimental Demonstration of a Visible Light Communications System Based on Binary Frequency-Shift Keying Modulation: A New Step toward Improved Noise Resilience

Author:

Beguni Cătălin12ORCID,Done Adrian2,Căilean Alin-Mihai123ORCID,Avătămăniței Sebastian-Andrei12,Zadobrischi Eduard12ORCID

Affiliation:

1. Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania

2. Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania

3. Systems Engineering Laboratory of Versailles, Paris-Saclay University, UVSQ, 78140 Vélizy, France

Abstract

Visible light communications (VLC) are an emerging technology that is increasingly demonstrating its ability to provide wireless communications in areas where radio frequency (RF) technology might have some limitations. Therefore, VLC systems offer possible answers to various applications in outdoor conditions, such as in the road traffic safety domain, or even inside large buildings, such as in indoor positioning applications for blind people. Nevertheless, several challenges must still be addressed in order to obtain a fully reliable solution. One of the most important challenges is focused on further improving the immunity to optical noise. Different from most works, where on–off keying (OOK) modulation and Manchester coding have been the preferred choices, this article proposes a prototype based on a binary frequency-shift keying (BFSK) modulation and non-return-to-zero (NRZ) coding, for which the resilience to noise is compared to that of a standard OOK VLC system. The experimental results showed an optical noise resilience improvement of 25% in direct exposure to incandescent light sources. The VLC system using BFSK modulation was able to maintain a maximum noise irradiance of 3500 µW/cm2 as compared with 2800 µW/cm2 for the OOK modulation, and an improvement of almost 20% in indirect exposure to the incandescent light sources. The VLC system with BFSK modulation was able to maintain the active link in an equivalent maximum noise irradiance of 65,000 µW/cm2, as opposed to the equivalent 54,000 µW/cm2 for the OOK modulation. Based on these results, one can see that based on a proper system design, VLC systems are able to provide impressive resilience to optical noise.

Funder

Ministry of Research, Innovation and Digitization, CCCDI–UEFISCDI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3