Analyses of the Temperature Field of a Piezoelectric Micro Actuator in the Endoscopic Biopsy Channel

Author:

Zhu ,Peng ,Yang

Abstract

Micro actuators have been used to realize the arrival of digestive tract lesions for the local targeted application of drugs in endoscopes. However, there still exists a key safety issue that casts a shadow over the practical and safe implementation of actuators in the human body, namely an overheated environment caused by actuators’ operation. Herein, with the aim of solving the temperature rising problem of a piezoelectric micro actuator operating in an endoscopic biopsy channel (OLYMPUS, Tokyo, Japan), a thermal finite element method (FEM) based on COMSOL Multiphysics software is proposed. The temperature distribution and its rising curves are obtained by the FEM method. Both the simulated and experimental maximum temperatures are larger than the safety value (e.g., 42 °C for human tissues) when the driving voltage of the actuator is 200 Vpp, which proves that the overheating problem really exists in the actuator. Furthermore, the results show that the calculated temperature rising curves correspond to the experimental results, proving the effectiveness of this FEM method. Therefore, we introduce a temperature control method through optimizing the duty ratio of the actuator. In comparison with a 100% duty ratio operation condition, it is found that a 60% duty ratio with a driving voltage of 200 Vpp can more effectively prevent the temperature rising issue in the first 3 min, as revealed by the corresponding temperatures of 44.4 and 41.4 °C, respectively. When the duty ratio is adjusted to 30% or less, the temperature rise of the actuator can be significantly reduced to only 36.6 °C, which is close to the initial temperature (36.4 °C). Meanwhile, the speed of the actuator can be well-maintained at a certain level, demonstrating its great applicability for safe operation in the human body.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3