Analysis of a Customized Clutch Joint Designed for the Safety Management of an Ultrasound Robot

Author:

Wang ShuangyiORCID,Housden Richard James,Noh Yohan,Singh Anisha,Lindenroth Lukas,Liu Hongbin,Althoefer Kaspar,Hajnal Joseph,Singh Davinder,Rhode Kawal

Abstract

Robotic systems have great potential to assist ultrasound (US) examination. Currently, the safety management method to limit the force that a US robot can apply mostly relies on force sensing and software-based algorithms. This causes the concern that the potential failure of sensors, electrical systems, or software could lead to patient injuries. In this paper, we investigated a customized spring-loaded ball clutch joint designed for a newly developed US robot to passively limit the force applied. The working mechanism of the clutch was modelled and the kinematic-based analysis was performed to understand the variation of the limited force at different postures of the robot. The triggering torque of the clutch was found to be 3928 N·mm, which results in the mean limited force 22.10 ± 1.76 N at the US probe end based on potential postures. The real measurement of the implemented design indicated that the limited force could be set between 17 and 24 N at the neutral posture depending on the preload. With the maximum preload, the mean limited force was found to be 21.98 ± 0.96 N based on 30 repeated measurements. The practically measured results meet the expectation from the theoretical calculation, and the resulting small variation has indicated a good repeatability of the clutch. Based on this evidence, it is concluded that the proposed clutch meets the design aim that it can limit the force applied within a safe range while at the same time ensuring that the required force is applied at different postures.

Funder

Wellcome Trust

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning in Robotic Ultrasound Imaging: Challenges and Perspectives;Annual Review of Control, Robotics, and Autonomous Systems;2024-07-10

2. Safe Learning by Constraint-Aware Policy Optimization for Robotic Ultrasound Imaging;IEEE Transactions on Automation Science and Engineering;2024

3. SmartSpring: A Low-Cost Wearable Haptic VR Display with Controllable Passive Feedback;IEEE Transactions on Visualization and Computer Graphics;2023-11

4. SAPM: Self-Adaptive Parallel Manipulator With Pose and Force Adjustment for Robotic Ultrasonography;IEEE Transactions on Industrial Electronics;2023-10

5. Robotic ultrasound imaging: State-of-the-art and future perspectives;Medical Image Analysis;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3