Application of Artificial Neural Networks in Hybrid Simulation

Author:

Mucha

Abstract

Hybrid simulation is a technique for testing mechanical systems. It applies to structures with elements hard or impossible to model numerically. These elements are tested experimentally by straining them by means of actuators, while the rest of the system is simulated numerically using a finite element method (FEM). Data is interchanged between experiment and simulation. The simulation is performed in real-time in order to accurately recreate the dynamic behavior in the experiment. FEM is very computationally demanding, and for systems with a great number of degrees of freedom (DOFs), real-time simulation with small-time steps (ensuring high accuracy) may require powerful computing hardware or may even be impossible. The author proposed to swap the finite element (FE) model with an artificial neural network (ANN) to significantly lower the computational cost of the real-time algorithm. The presented examples proved that the computational cost could be reduced by at least one number of magnitude while maintaining high accuracy of the simulation; however, obtaining appropriate ANN was not trivial and might require many attempts.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Hybrid simulation: A historical perspective;Nakashima,2008

2. Hybrid simulation theory for a classical nonlinear dynamical system

3. Real-time hybrid simulation using materials testing machine and FEM;Mucha,2016

4. Computational techniques for simulation of monolithic and heterogeneous structural dynamic systems;Bursi,2008

5. Integration schemes for real-time hybrid testing;Shing,2008

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3