Application of dynamic condensation for model order reduction in real-time hybrid simulations

Author:

Mucha WaldemarORCID

Abstract

AbstractThis paper presents an algorithm for model order reduction in real-time hybrid simulations. The bottleneck of hybrid simulations are usually the finite element computations that must be performed in real time. The common approach to deal with this inconvenience is to involve powerful computing hardware. In the following paper opposite approach is presented—a new algorithm is proposed for reducing the model order. This allows to perform hybrid simulations more efficiently while maintaining high accuracy. The algorithm is based on dynamic condensation where the degrees of freedom are divided into masters and slaves, and system matrices are transformed in a way that only masters are kept. The transformation process is complex however, it is performed offline, therefore a relatively high computational effort is made a priori to make real-time calculations more efficient. The dynamic condensation algorithm was adapted to the requirements of hybrid simulations. The proper selection of masters is crucial for accuracy therefore, a novel approach based on evolutionary optimization is implemented. Numerical and experimental examples are provided. The examples prove that by implementing the proposed algorithms the following effects are achieved: (a) the time step of hybrid simulation can be significantly decreased when using implicit integration (increasing the accuracy of the measured dynamic behavior), (b) explicit integration can be sometimes implemented where it was previously not possible in real time, (c) smaller hardware resources can be involved (all computations in real-time hybrid simulations during the experiments were performed on a small microcontroller).

Funder

Faculty of Mechanical Engineering, Silesian University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3