Meaningful Secret Image Sharing with Saliency Detection

Author:

Cheng JingwenORCID,Yan XuehuORCID,Liu Lintao,Jiang Yue,Wang Xuan

Abstract

Secret image sharing (SIS), as one of the applications of information theory in information security protection, has been widely used in many areas, such as blockchain, identity authentication and distributed cloud storage. In traditional secret image sharing schemes, noise-like shadows introduce difficulties into shadow management and increase the risk of attacks. Meaningful secret image sharing is thus proposed to solve these problems. Previous meaningful SIS schemes have employed steganography to hide shares into cover images, and their covers are always binary images. These schemes usually include pixel expansion and low visual quality shadows. To improve the shadow quality, we design a meaningful secret image sharing scheme with saliency detection. Saliency detection is used to determine the salient regions of cover images. In our proposed scheme, we improve the quality of salient regions that are sensitive to the human vision system. In this way, we obtain meaningful shadows with better visual quality. Experiment results and comparisons demonstrate the effectiveness of our proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secret image sharing with distinct covers based on improved Cycling-XOR;Journal of Visual Communication and Image Representation;2024-10

2. A study on secured encryption of medical images using significant visual cryptography;Engineering Research Express;2024-04-24

3. DSIS: A Novel (K,N) Threshold Deniable Secret Image Sharing Scheme with Lossless Recovery;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. A GPU scheme for multi-secret visual sharing with varied secret dimensions and contrast enhancement using blind super-resolution;International Journal of Information Technology;2024-01-19

5. Secret Image Sharing with Distinct Covers Based on Improved Cycling-Xor;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3