A GPU scheme for multi-secret visual sharing with varied secret dimensions and contrast enhancement using blind super-resolution

Author:

Holla M. RavirajaORCID,Suma D.

Abstract

AbstractMulti-secret visual sharing schemes are essential for secure and efficient sharing of sensitive visual information. However, existing schemes often overlook important considerations such as varied secret dimensions, contrast enhancement, and computational efficiency. This research addresses these challenges by proposing a comprehensive approach that addresses these limitations. Firstly, the scheme takes into account the varied dimensions of secret images encountered in real-world scenarios, allowing flexibility in sharing and reconstructing images of different sizes and aspect ratios. Secondly, the research integrates contrast enhancement techniques, such as blind super-resolution, to improve the visual quality and visibility of shared secret images affected by factors like noise, compression, or low lighting conditions. Lastly, to enhance the computational efficiency, the scheme leverages the power of Graphics Processing Units (GPUs) for parallel computing, enabling faster processing of large-scale image operations. The proposed scheme achieves outstanding results, with a high PSNR of 98.264, a strong NCC value of 0.965, an exceptionally low NAE value of 0.046, and an impressive SSIM value of 0.983. Furthermore, the GPU implementation provides a remarkable overall speedup of $$112\times$$ 112 × for $$256 \times 256$$ 256 × 256 color images.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. SIPI Image Database (1999(accessed August 23, 2020)). sipi.usc.edu/database/database.php?volume=misc?

2. Agarwal A, Deshmukh M (2021) 3-d plane based extended shamir’s secret sharing. Int J Inf Technol 13:609–612

3. Ahuja B, Doriya R (2022) Bifold-crypto-chaotic steganography for visual data security. Int J Inf Technol 14(2):637–648

4. Alkhodaidi TM, Gutub AA (2022) Scalable shares generation to increase participants of counting-based secret sharing technique. Int J Inf Comput Secur 17(1–2):119–146

5. Alshathri S, Hemdan EED (2023) An efficient audio watermarking scheme with scrambled medical images for secure medical internet of things systems. Multim Tools Appl 82(13):20177–95

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3