Synthesis and Evaluation of New Nitrone-Based Benzoxazinic Antioxidants

Author:

Marano StefaniaORCID,Minnelli CristinaORCID,Mobbili GiovannaORCID,Laudadio EmilianoORCID,Stipa PierluigiORCID

Abstract

Oxidative stress is often the cause of a wide range of human chronic pathologies including, but not limited to, stroke and cardiovascular and neurodegenerative diseases. In this setting, increasing efforts are currently being devoted to the design and synthesis of new derivatives with enhanced antioxidant efficacy. Among all the potential molecules of interest, synthetic nitrone spin-traps have attracted a great deal of research attention, particularly due to their dual function as effective inhibitors of oxidative stress and damage and as analytical tools for the detection and characterization of free radicals by means of the electron paramagnetic resonance (EPR) spectroscopy spin trapping technique. In this study, two derivatives of benzoxazinic nitrones (3-aryl-2H-benzo[1,4]oxazin-N-oxides) bearing an electron-withdrawing methyl-acetate group on the benzo moiety (in para and meta positions with respect to the nitronyl function) were synthesized. Their in vitro antioxidant activity was evaluated by means of the α,α-diphenyl-β-picrylhydrazyl radical (DPPH) scavenging assay, and their inhibitory effects on the erythrocyte hemolysis induced by the water-soluble free radical initiator 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) compared. In addition, EPR was employed to monitor the decay profiles of DPPH to evaluate the kinetic behavior of the different antioxidants tested. Results showed that the presence and the position of the electron-withdrawing methyl-acetate group strongly affects the radical scavenging activity of nitrones. In particular, the newly synthesized para-substituted derivative, when compared to both the meta-substituted isomer and the unsubstituted parent compound, acts as a more effective antioxidant both in cell and cell-free systems. Overall, these results clearly show that the introduction of an electron-withdrawing group on the phenyl moiety significantly increased the antioxidant capacity of benzoxazinic nitrones, thus showing exciting opportunities in the search for new therapeutic agents in the treatment of diseases associated with oxidative stress.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3