Zero-Vector-Injection Based Current Sharing Control of Interleaved Full-Bridge LLC Resonant Converters

Author:

Wu XuanlyuORCID,Luo Dejie,Wu Panpan,Zhao Xin,Kang Zhen,Wu Xiaohua

Abstract

Interleaved LLC resonant converters are widely used in various fields. However, interleaved LLC converters under Pulse Frequency Modulation (PFM) will lose the regulation of individual phases, causing a load sharing problem. Existing load sharing solutions have limitations; for example, phase shedding and current sharing cannot be realized at the same time. This paper proposed a novel current sharing method for interleaved full-bridge LLC resonant converters. Based on Zero-Vector-Injection, the voltage applied to the resonant tank is controlled to compensate for the difference in gain caused by component tolerance. The modulation strategy is proposed to maintain soft switching after Zero-Vector-Injection, and the phase shedding technique is also used to improve the efficiency at a light load. The detailed theoretical analysis and implementation method are proposed and validated using simulations. Experiments are also carried out to verify the feasibility of the proposed strategy based on a 2-phase 1.8 kW prototype.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Full Bridge LLC Resonant Converter Based on LADRC in Marine DC Power Supply System;2023 5th International Conference on Power and Energy Technology (ICPET);2023-07-27

2. Automatic current balancing for two-phase interleaved LLC resonant converter;Journal of Power Electronics;2023-01-05

3. High Power High Step-Up LLC Resonant Converter With Multimode For Aircraft Applications;2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific);2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3