The Influence of Parasitic Components on LLC Resonant Converter

Author:

Li FangORCID,Hao Ruixiang,Lei HaodongORCID,Zhang Xinyi,You Xiaojie

Abstract

In recent years, the LLC resonant converter has been widely used in DC–DC conversion applications. However, the parasitic components of the LLC resonant converter have a significant impact in practical applications, such as influence on the conduction loss and the soft-switching of power devices, the voltage oscillation across rectifier diodes, the unregulated output voltage at light load condition and so on. It is hard to analyze the higher-order circuits by the conventional analysis methods. Focusing on the operational principle of the LLC converter with parasitic components, the differential equation model is presented and solved by the numerical method in this paper. The simulation results verify the correctness of the theoretical analysis. The causes of two different frequency oscillations and the voltage spike are clarified. The design considerations and a specific example of the LLC converter are given. The experimental results are consistent with the simulation results, and the soft-switching of primary-side switches can be achieved in the prototype.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of high voltage and high power supply for aerospace based on LLC resonant converter;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

2. Application-Oriented Review of the LLC-Based Resonant Converters;IEEE Access;2024

3. Influence of the Parasitic Components in Induction Motor;2023 XXXII International Scientific Conference Electronics (ET);2023-09-13

4. A Transformer Design for High-Voltage Application Using LLC Resonant Converter;Energies;2023-01-30

5. A Hybrid Modulation Technique for Voltage Regulation in LLC Converters in the Presence of Transformer Parasitic Capacitance;2022 IEEE Energy Conversion Congress and Exposition (ECCE);2022-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3