Energy End-Use Categorization and Performance Indicators for Energy Management in the Engineering Industry

Author:

Kanchiralla FayasORCID,Jalo Noor,Johnsson SimonORCID,Thollander Patrik,Andersson MariaORCID

Abstract

Energy efficiency (EE) improvement is one of the most crucial elements in the decarbonization of industry. EE potential within industries largely remains untapped due to the lack of information regarding potential EE measures (EEM), knowledge regarding energy use, and due to the existence of some inconsistencies in the evaluation of energy use. Classification of energy end-using processes would increase the understanding of energy use, which in turn would increase the detection and deployment of EEMs. The study presents a novel taxonomy with hierarchical levels for energy end-use in manufacturing operations for the engineering industry, analyzes processes in terms of energy end-use (EEU) and CO2 emissions, and scrutinizes energy performance indicators (EnPIs), as well as proposing potential new EnPIs that are suitable for the engineering industry. Even though the study has been conducted with a focus on the Swedish engineering industry, the study may be generalizable to the engineering industry beyond Sweden.

Funder

Havs- och Vattenmyndigheten

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. World Energy Balances,2018

2. CO2 Emissions from Fuel Combustion,2018

3. Energilägethttp://www.energimyndigheten.se/globalassets/statistik/energilaget/energilaget-i-siffror-2019.xlsx

4. Perspectives for the Energy Transition: The Role of Energy Efficicency,2018

5. Global Energy and CO2 Status Report,2019

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3