Methodology for an Opto-Geometric Optimization of a Linear Fresnel Reflector for Direct Steam Generation

Author:

González-Mora EduardoORCID,Durán García Ma. DoloresORCID

Abstract

A methodology for an optical optimization of the intercept factor concerning a linear Fresnel reflector is described to increase the amount of solar irradiation that will be delivered in the absorber for Agua Prieta, Sonora; taking the FRESDEMO’s Fresnel field as the reference design. For the performed optimization, the intercept factor is determined as a function of the receiver’s height, establishing a simple criterion for the optimization. The FRESDEMO’s field description is determined and briefly discussed, next compared with the proposed optimization. The compound parabolic concentrator (CPC) Winston function for a circular absorber is modified to relocate the cusp of the reflector and the absorber. This modified CPC will redirect all the reflected rays that do not hit directly the absorber, as in the FRESDEMO field, so all of them are captured by the absorber. Through ray-tracing, the graphic flux distribution in the receiver aperture is conceived. This flux distribution is compared with the FRESDEMO field and with a PTC with a flat absorber, ensuring an adequate optimization regarding the intercept factor. The result of the opto-geometric optimization is compared between the FRESDEMO and the optimized field for a specified thermal process, addressing a considerable reduction in the length of the loops.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference44 articles.

1. Harnessing Solar Heat;Norton,2014

2. Solar Power Generation;Breeze,2014

3. 1—Introduction to concentrating solar thermal (CST) technologies;Blanco,2017

4. History, current state, and future of linear Fresnel concentrating solar collectors

5. 6—Linear Fresnel reflector (LFR) technology;Mills,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3