An Accurate Clinical Implication Assessment for Diabetes Mellitus Prevalence Based on a Study from Nigeria

Author:

Sohail Muhammad NomanORCID,Jiadong Ren,Muhammad Musa Uba,Chauhdary Sohaib Tahir,Arshad JehangirORCID,Verghese Antony John

Abstract

The increasing rate of diabetes is found across the planet. Therefore, the diagnosis of pre-diabetes and diabetes is important in populations with extreme diabetes risk. In this study, a machine learning technique was implemented over a data mining platform by employing Rule classifiers (PART and Decision table) to measure the accuracy and logistic regression on the classification results for forecasting the prevalence in diabetes mellitus patients suffering simultaneously from other chronic disease symptoms. The real-life data was collected in Nigeria between December 2017 and February 2019 by applying ten non-intrusive and easily available clinical variables. The results disclosed that the Rule classifiers achieved a mean accuracy of 98.75%. The error rate, precision, recall, F-measure, and Matthew’s correlation coefficient MCC were 0.02%, 0.98%, 0.98%, 0.98%, and 0.97%, respectively. The forecast decision, achieved by employing a set of 23 decision rules (DR), indicates that age, gender, glucose level, and body mass are fundamental reasons for diabetes, followed by work stress, diet, family diabetes history, physical exercise, and cardiovascular stroke history. The study validated that the proposed set of DR is practical for quick screening of diabetes mellitus patients at the initial stage without intrusive medical tests and was found to be effective in the initial diagnosis of diabetes.

Funder

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3