Affiliation:
1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore 54000, Pakistan
2. Department of Information Technology, Assosa University, Assosa 5220, Ethiopia
Abstract
In this research, an intelligent and cost-efficient system has been proposed to detect the improper sitting posture of a person working at a desk, mostly in offices, using machine learning classification techniques. The current era demands to avoid the harms of an improper posture as it, when prolonged, is very painful and can be fatal sometimes. This study also includes a comparison of two arrangements. Arrangement 01 includes six force-sensitive resistor (FSR) sensors alone, and it is less expensive. Arrangement 02 consists of two FSR sensors and one ultrasonic sensor embedded in the back seat of a chair. The K-nearest neighbor (KNN), Naive Bayes, logistic regression, and random forest algorithms are used to augment the gain and enhanced accuracy for posture detection. The improper postures recognized in this study are backward-leaning, forward-leaning, left-leaning, and right-leaning. The presented results validate the proposed system as the accuracy of 99.8% is achieved using a smaller number of sensors that make the proposed prototype cost-efficient with improved accuracy and lower execution time. The proposed model is of a dire need for employees working in offices or even at the residential level to make it convenient to work for hours without having severe effects of improper posture and prolonged sitting.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献