Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI

Author:

Demirkan Doga CagdasORCID,Duzgun H. SebnemORCID,Juganda Aditya,Brune Jurgen,Bogin Gregory

Abstract

Detecting the formation of explosive methane–air mixtures in a longwall face is still a challenging task. Even though atmospheric monitoring systems and computational fluid dynamics modeling are utilized to inspect methane concentrations, they are not sufficient as a warning system in critical regions, such as near cutting drums, in real-time. The long short-term memory algorithm has been established to predict and manage explosive gas zones in longwall mining operations before explosions happen. This paper introduces a novel methodology with an artificial intelligence algorithm, namely, modified long short-term memory, to detect the formation of explosive methane–air mixtures in the longwall face and identify possible explosive gas accumulations prior to them becoming hazards. The algorithm was trained and tested based on CFD model outputs for six locations of the shearer for similar locations and operational conditions of the cutting machine. Results show that the algorithm can predict explosive gas zones in 3D with overall accuracies ranging from 87.9% to 92.4% for different settings; output predictions took two minutes after measurement data were fed into the algorithm. It was found that faster and more prominent coverage of accurate real-time explosive gas accumulation predictions are possible using the proposed algorithm compared to computational fluid dynamics and atmospheric monitoring systems.

Funder

DIPA DIKTI RISTEK

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference48 articles.

1. BP Statistical Review of World Energy;Dudley;BP Stat. Rev. Lond. UK Accessed Aug.,2018

2. Longwall Mining;Peng,2019

3. New insight into proactive goaf inertisation for spontaneous combustion management and control

4. Evaluation of Point-Based Methane Monitoring and Proximity Detection for Methane Explosive Zones in Longwall Faces of Underground Coal Mines;Juganda,2020

5. Discrete modeling of a longwall coal mine gob for CFD simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3