Abstract
Detecting the formation of explosive methane–air mixtures in a longwall face is still a challenging task. Even though atmospheric monitoring systems and computational fluid dynamics modeling are utilized to inspect methane concentrations, they are not sufficient as a warning system in critical regions, such as near cutting drums, in real-time. The long short-term memory algorithm has been established to predict and manage explosive gas zones in longwall mining operations before explosions happen. This paper introduces a novel methodology with an artificial intelligence algorithm, namely, modified long short-term memory, to detect the formation of explosive methane–air mixtures in the longwall face and identify possible explosive gas accumulations prior to them becoming hazards. The algorithm was trained and tested based on CFD model outputs for six locations of the shearer for similar locations and operational conditions of the cutting machine. Results show that the algorithm can predict explosive gas zones in 3D with overall accuracies ranging from 87.9% to 92.4% for different settings; output predictions took two minutes after measurement data were fed into the algorithm. It was found that faster and more prominent coverage of accurate real-time explosive gas accumulation predictions are possible using the proposed algorithm compared to computational fluid dynamics and atmospheric monitoring systems.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference48 articles.
1. BP Statistical Review of World Energy;Dudley;BP Stat. Rev. Lond. UK Accessed Aug.,2018
2. Longwall Mining;Peng,2019
3. New insight into proactive goaf inertisation for spontaneous combustion management and control
4. Evaluation of Point-Based Methane Monitoring and Proximity Detection for Methane Explosive Zones in Longwall Faces of Underground Coal Mines;Juganda,2020
5. Discrete modeling of a longwall coal mine gob for CFD simulation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献