CFD Modeling of Pressure Drop through an OCP Server for Data Center Applications

Author:

Dogan Aras,Yilmaz SibelORCID,Kuzay MustafaORCID,Yilmaz CagatayORCID,Demirel EnderORCID

Abstract

Modeling IT equipment is of critical importance for the simulations of flow and thermal structures in air cooled data centers. Turbulent flow undergoes a significant pressure drop through the server due to the energy losses originating from the internal components. Therefore, there is an urgent need to develop a fast and an accurate method for the calculation of pressure losses inside server components for data center applications. In this study, high resolution numerical simulations were performed on an OCP (Open Compute Project) server under various inlet flow rates for inactive and active conditions. Meanwhile, one key challenge of modeling complete geometry of the server results from using an intense mesh even for a single server. To address this challenge, the server was modeled as a porous zone to mimic inertia and viscous resistance in a realistic way. Comparison of the results of porous and complete models showed that the proposed model could calculate pressure drop accurately even when the number of cells in the server was reduced to 0.3% of the complete model. Porosity coefficients were determined from the numerical simulations conducted in a broad range of air discharge for both active and inactive conditions. Errors in the calculation of pressure drop may result in a significant deviation in the prediction of the temperature rise over the server. Thus, the present model can effectively be used for the fast and accurate prediction of pressure drop inside a server component rather than solving internal flow on an intense mesh, while simulating airflow inside an air-cooled data center, which is crucial for the design safety of data centers. Finally, calculated porosity coefficients can be used for the prediction of the pressure drop in a server, while designing data centers based on numerical simulations.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Development and validation of an open-source CFD model for the efficiency assessment of data centers

2. Thermal mass availability for cooling data centers during power shutdown;Khankari;ASHRAE Trans.,2010

3. Effect of thermal characteristics of electronic enclosures on dynamic data center performance;Ibrahim;Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,2010

4. Characterization of a server thermal mass using experimental measurements;Ibrahim;Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems,2011

5. Real-time data center transient analysis;Zhang;Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems,2011

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3