Road Rutting Measurement Using Mobile LiDAR Systems Point Cloud

Author:

Gézero Luis,Antunes CarlosORCID

Abstract

Road rutting caused by vehicle loading in the wheel path is a major form of asphalt pavement distress. Hydroplaning and loss of skid resistance are directly related to high road rutting severity. Periodical measurements of rut depth are crucial to maintenance and rehabilitation planning. In this study, we explored the feasibility of using point clouds gathered by Mobile LiDAR systems to measure the rut depth. These point clouds that are collected along roads are usually used for other purposes, namely asset inventory or topographic survey. Taking advantage of available clouds to identify rutting severity in critical pavement areas can result in considerable economic and time saving and thus, added value, when compared with specific expensive rut measuring systems. Four different strategies of cloud points aggregation are presented to create the cross-section of points. Such strategies were established to improve the precision of individual sensor measurements. Despite the 5 mm precision of the used system, it was possible to estimate rut depth values that were slightly inferior. The rut depth values obtained from each cross-section strategy were compared with the manual field measured values. The cross-sections based on averaged cloud points sensor profile aggregation was revealed to be the most suitable strategy to measure rut depth. Despite the fact that the study was specifically conducted to measure rut depth, the evaluation results show that the methodology can also be useful for other mobile LiDAR point clouds cross-sections applications.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3