Determination of Layers Responsible for Rutting Failure in a Pavement Structure

Author:

Chilukwa Nathan,Lungu Richard

Abstract

Rutting is one of the most common distresses in asphalt pavements in Zambia. The problem is particularly prevalent at intersections, bus stops, railway crossings, police checkpoints, climbing lanes and other heavily loaded sections, where there is deceleration, slow moving or static loading. The most widely used methods to identify the source of rutting among flexible pavement layers are destructive methods; field trenching and coring methods. The Transverse Profile Analysis method (TPAM), which is a non-destructive method, was suggested by White et al. in 2002 as an alternative method, to avoid the expensive and destructive nature of the traditional methods. In this method, data from the transverse profile of the rutted section is used to deduce the layer of the pavement structure responsible for rutting failure. This study used the TPAM to determine the layers of pavement responsible for rutting on sections of the Chibuluma and Kitwe-Chingola Roads in Zambia. The method was first validated using the trenching method on the Kitwe-Ndola Road. Results from the TPAM showed good comparability with those from the trenching method. It was established that most of the rutting emanated from the surfacing layer. This is consistent with recent research indicating that most rutting occurs in the upper part of the asphalt surfacing. It was also established that the TPAM was a simpler, faster and less costly method of determining the source of rutting failure compared to the traditional methods.

Publisher

MDPI AG

Subject

Computer Science Applications,Geotechnical Engineering and Engineering Geology,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference20 articles.

1. Road Condition Report,2014

2. Calibration of Rutting Models for Structural and Mix Design

3. Evaluation of Rut-Depth Accuracy and Precision Using Different Automated Systems for Texas Conditions;Serigos,2013

4. Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim edition,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3