A Filtering-Based Approach for Improving Crowdsourced GNSS Traces in a Data Update Context

Author:

Ivanovic Stefan,Olteanu-Raimond Ana-MariaORCID,Mustière Sébastien,Devogele Thomas

Abstract

Traces collected by citizens using GNSS (Global Navigation Satellite System) devices during sports activities such as running, hiking or biking are now widely available through different sport-oriented collaborative websites. The traces are collected by citizens for their own purposes and frequently shared with the sports community on the internet. Our research assumption is that crowdsourced GNSS traces may be a valuable source of information to detect updates in authoritative datasets. Despite their availability, the traces present some issues such as poor metadata, attribute incompleteness and heterogeneous positional accuracy. Moreover, certain parts of the traces (GNSS points composing the traces) are results of the displacements made out of the existing paths. In our context (i.e., update authoritative data) these off path GNSS points are considered as noise and should be filtered. Two types of noise are examined in this research: Points representing secondary activities (e.g., having a lunch break) and points representing errors during the acquisition. The first ones we named secondary human behaviour (SHB), whereas we named the second ones outliers. The goal of this paper is to improve the smoothness of traces by detecting and filtering both SHB and outliers. Two methods are proposed. The first one allows for the detection secondary human behaviour by analysing only traces geometry. The second one is a rule-based machine learning method that detects outliers by taking into account the intrinsic characteristics of points composing the traces, as well as the environmental conditions during traces acquisition. The proposed approaches are tested on crowdsourced GNSS traces collected in mountain areas during sports activities.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3