Data Fusion in Earth Observation and the Role of Citizen as a Sensor: A Scoping Review of Applications, Methods and Future Trends

Author:

Karagiannopoulou AikateriniORCID,Tsertou AthanasiaORCID,Tsimiklis GeorgiosORCID,Amditis AngelosORCID

Abstract

Recent advances in Earth Observation (EO) placed Citizen Science (CS) in the highest position, declaring their essential provision of information in every discipline that serves the SDGs, and the 2050 climate neutrality targets. However, so far, none of the published literature reviews has investigated the models and tools that assimilate these data sources. Following this gap of knowledge, we synthesised this scoping systematic literature review (SSLR) with a will to cover this limitation and highlight the benefits and the future directions that remain uncovered. Adopting the SSLR guidelines, a double and two-level screening hybrid process found 66 articles to meet the eligibility criteria, presenting methods, where data were fused and evaluated regarding their performance, scalability level and computational efficiency. Subsequent reference is given on EO-data, their corresponding conversions, the citizens’ participation digital tools, and Data Fusion (DF) models that are predominately exploited. Preliminary results showcased a preference in the multispectral satellite sensors, with the microwave sensors to be used as a supplementary data source. Approaches such as the “brute-force approach” and the super-resolution models indicate an effective way to overcome the spatio-temporal gaps and the so far reliance on commercial satellite sensors. Passive crowdsensing observations are foreseen to gain a greater audience as, described in, most cases as a low-cost and easily applicable solution even in the unprecedented COVID-19 pandemic. Immersive platforms and decentralised systems should have a vital role in citizens’ engagement and training process. Reviewing the DF models, the majority of the selected articles followed a data-driven method with the traditional algorithms to still hold significant attention. An exception is revealed in the smaller-scale studies, which showed a preference for deep learning models. Several studies enhanced their methods with the active-, and transfer-learning approaches, constructing a scalable model. In the end, we strongly support that the interaction with citizens is of paramount importance to achieve a climate-neutral Earth.

Funder

European Union

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3