Trajectory Planning and Optimization for a Par4 Parallel Robot Based on Energy Consumption

Author:

Zhang XiaoqingORCID,Ming Zhengfeng

Abstract

A study on trajectory planning and optimization for a Par4 parallel robot was carried out, based on energy consumption in high-speed picking and placing. In the end-effector operating space of the Par4 parallel robot, the rectangular transition of the pick-and-place trajectory was rounded by a Lamé curve. A piecewise design method was adopted to accomplish trajectory shape planning for displacement, velocity and acceleration. To make the Par4 robot’s end run more smoothly and to reduce residual vibration, asymmetric fifth-order and sixth-order polynomial motion laws were employed. With the aim of reaching the minimum mechanical energy consumption for the Par4 parallel robot, the recently proposed Grey Wolf Optimizer (GWO) algorithm was adopted to optimize the planning trajectory. The validity of the design method was verified by experiments, and it was found that the minimum mechanical energy consumption of the optimal trajectory planned under the law of fifth-order polynomial motion is lower than that of sixth-order polynomial motion. In addition, the experiments also revealed the optimal values of Parameters e and f, which were the parameters of the Lamé curve function. Parameter e can be calculated as half the pick-up span for the minimum mechanical energy consumption, unlike parameter f, whose optimal value depends on specific circumstances such as the pick-and-place coordinates and the pick-up height.

Funder

National High-Tech Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3