Adaptive Sliding Mode Control Anticipating Proportional Degradation of Actuator Torque in Uncertain Serial Industrial Robots

Author:

Truc Le NgocORCID,Vu Le AnhORCID,Thoan Tran VanORCID,Thanh Bui Trung,Nguyen Tung LamORCID

Abstract

The paper focuses on faulty actuator problems in an industrial robot using servomotors, and provides an adaptive sliding mode control law to overcome this circumstance. Because of multifarious reasons, robot actuators can undergo a variety of failures, such as locked or stuck joints, free-swinging joints, and partial or total loss of actuation effectiveness. The robot behavior will become worsen if the system controller has not been designed with adequate faulty tolerance. The proportional degradation of actuator torque at unknown degrees of loss, which is one type of partial loss of actuation effectiveness, is considered in this study to design a suitable controller. The robot model is constructed with uncertain parameters and unknown friction, whereas the controller uses only the approximate parameters. Symmetry and skew-symmetry give important contributions in robot modeling and transformation, as well as in the process of proving the system stability. An adjustable coefficient vector of the proposed controller can adaptively reach the upper bounds of an uncertain parametric vector, which guarantees the criterion of Lyapunov stability. In the numerical simulation stage, the selected industrial robot is a Serpent 1 robot with three degrees of freedom. A quasi-physical model based on MATLAB/Simscape Multibody for the robot is built and used in order to increase the reliability of the simulation performance closer to reality. Simulation results illustrate the efficiency of the proposal control methodology in the presence of the mentioned failure. The controller can still deliver satisfactory responses to the robot system under reasonable levels of actuator torque degradation.

Funder

Ministry of Education and Training of Vietnam

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3