Dual-Time-Scale Sliding Mode Control for Surface-Mounted Permanent Magnet Synchronous Motors

Author:

Che ZhiyuanORCID,Yu HaitaoORCID,Mobayen SalehORCID,Ali MuradORCID,Yang ChunyuORCID,El-Sousy Fayez F. M.ORCID

Abstract

The permanent magnet synchronous motors (PMSMs) as the completely symmetrical three-phase machines, which are usually driven by symmetrical voltage signals. Unfortunately, a PMSM system usually suffers from the different lumped disturbances, such as internal parametric perturbations and external load torques, the speed regulation problem should be addressed within the different operation situations. Characterizing by the current variation speed of the motor winding is much faster than that of the mechanical dynamic velocity, a dual-time-scale sliding mode control (SMC) method for the surface-mounted PMSMs is proposed in this paper. Firstly, the mathematical model of PMSMs is established in the two-phase synchronous rotating orthogonal reference coordinate system, and the slow and fast variation subsystems are obtained based on the quasi-steady-state theory. Secondly, a tracking differentiator (TD)-based and exponential reaching law-based sliding mode controllers are individually designed within dual-time-scale, respectively. As a result, the eventual SMC strategy is presented, and the stability of control system is analyzed by applying the Lyapunov stability theory. The main contribution of this study is to present an alternative control framework for the PMSMs servo system, where the dual-time-scale characteristic is involved, and thus a non-cascade control structure that different from the traditional drive strategy is proposed in the motor community. Finally, the model of whole system is built and carried out on the simulation platform. Research results demonstrate that the presented servo control system can accurately track the reference angle velocity signal, while the strong robustness and fast response performance are guaranteed in the presence of external disturbances. In addition, the three-phase current transient response values are completely symmetrical with the rapid adjustment characteristic.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3