M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios

Author:

Liu Yuchen,Shi Gang,Li Yanxiang,Zhao Ziyu

Abstract

Traffic signs can be seen everywhere in daily life. Traffic signs are symmetrical, and traffic sign detection is easily affected by distortion, distance, light intensity and other factors, which also increases the potential safety hazards of assisted driving in practical application. In order to solve this problem, a symmetrical traffic sign detection algorithm M-YOLO for complex scenes is proposed. The algorithm optimizes the delay problem by reducing the computational overhead of the network, and speeds up the speed of feature extraction. While improving the detection efficiency, it ensures a certain degree of generalization and robustness, and enhances the detection performance of traffic signs in complex environments, such as scale and illumination changes. Experimental results on CCTSDB dataset containing traffic signs in complex scenes and HRRSD small target dataset show that M-YOLO algorithm has good detection performance. Compared with other algorithms, it has higher detection accuracy and detection speed. The test results in real complex scenes show that the detection effect of this algorithm is better than that of YOLOv5l algorithm, and M-YOLO algorithm can accurately detect the traffic signs that cannot be detected by YOLOv5l algorithm. Therefore, the algorithm proposed in this article can effectively improve the detection accuracy of traffic signs, is suitable for complex scenes, and has a good detection effect on small targets.

Funder

新疆维吾尔自治区自然科学基金资助项目

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3