Custom Anchorless Object Detection Model for 3D Synthetic Traffic Sign Board Dataset with Depth Estimation and Text Character Extraction

Author:

Soans Rahul1ORCID,Fukumizu Yohei1ORCID

Affiliation:

1. Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan

Abstract

This paper introduces an anchorless deep learning model designed for efficient analysis and processing of large-scale 3D synthetic traffic sign board datasets. With an ever-increasing emphasis on autonomous driving systems and their reliance on precise environmental perception, the ability to accurately interpret traffic sign information is crucial. Our model seamlessly integrates object detection, depth estimation, deformable parts, and text character extraction functionalities, facilitating a comprehensive understanding of road signs in simulated environments that mimic the real world. The dataset used has a large number of artificially generated traffic signs for 183 different classes. The signs include place names in Japanese and English, expressway names in Japanese and English, distances and motorway numbers, and direction arrow marks with different lighting, occlusion, viewing angles, camera distortion, day and night cycles, and bad weather like rain, snow, and fog. This was done so that the model could be tested thoroughly in a wide range of difficult conditions. We developed a convolutional neural network with a modified lightweight hourglass backbone using depthwise spatial and pointwise convolutions, along with spatial and channel attention modules that produce resilient feature maps. We conducted experiments to benchmark our model against the baseline model, showing improved accuracy and efficiency in both depth estimation and text extraction tasks, crucial for real-time applications in autonomous navigation systems. With its model efficiency and partwise decoded predictions, along with Optical Character Recognition (OCR), our approach suggests its potential as a valuable tool for developers of Advanced Driver-Assistance Systems (ADAS), Autonomous Vehicle (AV) technologies, and transportation safety applications, ensuring reliable navigation solutions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3