Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator

Author:

Riviello Daniel1ORCID,Tuninato Riccardo2,Zimaglia Elisa3,Fantini Roberto3,Garello Roberto2ORCID

Affiliation:

1. Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40136 Bologna, Italy

2. Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129 Torino, Italy

3. TIM S.p.A., 10148 Torino, Italy

Abstract

Advances in machine learning have widened the range of its applications in many fields. In particular, deep learning has attracted much interest for its ability to provide solutions where the derivation of a rigorous mathematical model of the problem is troublesome. Our interest was drawn to the application of deep learning for channel state information feedback reporting, a crucial problem in frequency division duplexing (FDD) 5G networks, where knowledge of the channel characteristics is fundamental to exploiting the full potential of multiple-input multiple-output (MIMO) systems. We designed a framework adopting a 5G New Radio convolutional neural network, called NR-CsiNet, with the aim of compressing the channel matrix experienced by the user at the receiver side and then reconstructing it at the transmitter side. In contrast to similar solutions, our framework is based on a 5G New Radio fully compliant simulator, thus implementing a channel generator based on the latest 3GPP 3-D channel model. Moreover, realistic 5G scenarios are considered by including multi-receiving antenna schemes and noisy downlink channel estimation. Simulations were carried out to analyze and compare the performance with current feedback reporting schemes, showing promising results for this approach from the point of view of the block error rate and throughput of the 5G data channel.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3