Abstract
AbstractThe 5G New Radio synchronization procedure is the first step that the user must complete to access the mobile network. It mainly consists of the detection of the primary and secondary synchronization signals (PSS and SSS, respectively) and the decoding of the physical broadcast channel (PBCH). Our goal is to provide a comprehensive study of the synchronization procedure and investigate different techniques and approaches, through the implementation of a 5G New Radio-compliant simulator. Of significant interest is the investigation of impairments such as the fading channel, the frequency offset, and the delay spread. The results are provided in terms of detection probability for the PSS and SSS detection, and in terms of block error rate for the PBCH. From the data collected, there is evidence that choosing M-sequences for the PSS leads to an appreciably robust solution against frequency offset. The structure of the Gold sequences for SSS generation can be exploited to reduce the detection complexity, and different approaches can be chosen to improve reliability against delay spread. Moreover, the polar coding for 5G PBCH outperforms the former 4G coding technique, but they are still sensible to frequency offset. Finally, the simulator functionalities are validated through real captures of 5G signals.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献