Numerical Simulation of Three-Dimensional Dendrite Movement Based on the CA–LBM Method

Author:

Wang QiORCID,Wang Yingming,Zhang Shijie,Guo Binxu,Li Chenyu,Li Ri

Abstract

At present, the calculation of three-dimensional (3D) dendrite motion using the cellular automata (CA) method is still in its infancy. In this paper, a 3D dendrite motion model is constructed. The heat, mass, and momentum transfer process in the solidification process of the alloy melt are calculated using a 3D Lattice–Boltzmann method (LBM). The growth process for the alloy microstructure is calculated using the CA method. The interactions between dendrites and the melt are assessed using the Ladd method. The solid–liquid boundary of the solute field in the movement process is assessed using the solute extrapolation method. The translational velocity of the equiaxed crystals in motion is calculated using the classical mechanical law. The rationality of the model is verified and the movement of single and multiple 3D equiaxed crystals is simulated. Additionally, the difference between 3D dendrite movement and two-dimensional (2D) dendrite movement is analyzed. The results demonstrate that the growth of moving dendrites is asymmetric. The growth velocity and falling velocity of the dendrite in the 3D model are faster than that in 2D model, while the simulation result is more realistic than that of the 2D model. When multiple dendrites move, the movement direction of the dendrites will change due to the merging of flow fields and other factors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3