GPU-Based Cellular Automata Model for Multi-Orient Dendrite Growth and the Application on Binary Alloy

Author:

Wang JingjingORCID,Meng Hongji,Yang Jian,Xie Zhi

Abstract

To simulate dendrite growth with different orientations more efficiently, a high-performance cellular automata (CA) model based on heterogenous central processing unit (CPU)+ graphics processing unit (GPU) architecture has been proposed in this paper. Firstly, the decentered square algorithm (DCSA) is used to simulate the morphology of dendrite with different orientations. Secondly, parallel algorithms are proposed to take full advantage of many cores by maximizing computational parallelism. Thirdly, in order to further improve the calculation efficiency, the task scheduling scheme using multi-stream is designed to solve the waiting problem among independent tasks, improving task parallelism. Then, the present model was validated by comparing its steady dendrite tip velocity with the Lipton–Glicksman–Kurz (LGK) analytical model, which shows great agreement. Finally, it is applied to simulate the dendrite growth of the binary alloy, which proves that the present model can not only simulate the clear dendrite morphology with different orientations and secondary arms, but also show a good agreement with the in situ experiment. In addition, compared with the traditional CPU model, the speedup of this model is up to 158×, which provides a great acceleration.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3